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SUMMARY 

We examine the solution of a practical engineering problem on a parallel computer. The problem involves the 
steady laminar viscous flow about an ONERA M6 wing and the computer is a 64-processing-node Connection 
Machine CM-5E. We show that efficient domain decomposition procedures lead to a balanced load on the 
processors and low communication times. The net result is that solutions can be attained in roughly 20 min 
elapsed time for a 48,011-node, 266,566-element unstructured mesh. We conclude that this is sufficiently fast to 
support the design process. 
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1. INTRODUCTION 

Parallel computers are capable of significantly reducing computation time on problems of practical 
engineering interest. One anticipates the reduction in time to be significant enough so that analysis of 
complex models can be used in the early design process. This is presently not the case, as complex 
analysis is usually reserved for very late in the design process. In order to bring to fruition the vision of 
efficient parallel analysis of engineering problems, one needs to realize that computing in a parallel 
environment involves a number of additional complexities when compared with computing in a 
sequential environment. Paramount among these are domain decomposition, load balancing and 
communication costs. Thus, unfortunately, parallel computing is simply more complex than sequential 
computing. In this paper we consider a case study of the laminar viscous flow about an ONERA M6 
wing calculated on a 64-processing-node CM-5E system, each processing node being composed of 
four vector units. A vector unit will be referred to as a processor in the remainder of this paper. The 
model consists of 48,011 nodes and 266,566 elements. We discuss and analyse the recursive spectral 
bisection of the model in 256 subdomains and assess its impact on load balancing and communication 
costs. Despite these additional complexities, we conclude that a very efficient procedure can be 
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developed enabling a solution to be attained in roughly 20 min elapsed time. This is sufficiently fast to 
support the preliminary design phase. 

2. PARALLEL IMPLEMENTATION ON THE CM-5E SYSTEM 

Data distribution is a crucial issue when implementing finite element techniques on distributed 
memory parallel computers. Communication between processors can become a bottle-neck if the finite 
element data structures are not carefully mapped to the processors. In order to minimize this bottle- 
neck, we have developed a set of data-mapping strategies and implemented them on the Connection 
Machine CM-5E system. Special library communication routines taking advantage of data locality to 
reduce data transfer between processors are used to perform the gather and scatter operations found in 
finite element applications. 

2. I .  Data-mapping strategies 

Both elements and nodes of an unstructured mesh are mapped onto the processors of the CM-5E 

1. First the mesh is decomposed into element blocks made of adjacent elements and each block is 

2. The mesh nodes are then mapped onto the processors using the mesh partitioning as a criterion 

The objective of these mappings is to achieve as much locality between the nodes and the elements 
as possible to minimize data transfer through the CM-5E data network. In order to achieve the best 
computational load balance possible in the finite element programme itself, we constrain the 
elements and the nodes to be uniformly distributed across the processors, i.e. all processors hold the 
same number of elements (resp. nodes) except for the last one which gets whatever elements (resp. 
nodes) remain. The implementation of both mapping strategies is done on the CM-5E system itself. 

system. We have designed a two-step procedure which performs these mappings. 

mapped onto a processor. 

for choosing the placement of each node. 

2.1.1. Mesh partitioning. The recursive spectral bisection (RSB) algorithm was chosen as the basis 
of the data-mapping strategies described in this paper. The RSB algorithm was proposed by Pothen et 
al. for reordering sparse matrices.' Simon then applied it to unstructured mesh partitioning.* The RSB 
algorithm has since found wide acceptance in the scientific community because of the high-quality 
partitionings it generates. 

The RSB algorithm is based on a graph representation of the mesh topology. It is therefore 
insensitive to regions of highly concentrated elements or to element distorsion. In our implementation 
the graph is generated through the dual mesh connectivig, which identifies the elements sharing a face 
with a given element. In this representation the mesh elements become the graph vertices and the 
internal faces correspond to the graph edges. The mesh partitioning is performed using an iterative 
process which decomposes the whole mesh into two partitions, each of which in turn is decomposed 
into two partitions, and so on. The process ends when there are as many partitions as processors in the 
CM-5E configuration considered. Each iteration of the process just described involves several 
computational steps. 

1. Possible disconnections in a partition are identified using a frontal algorithm. 
2. The smallest non-zero eigenvalue and its associated eigenvector (also called the Fiedler vector) 
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of the Laplacian matix L, defined as 

- 1 if elements i andj  share a face, 
0 otherwise, 

are computed using the Lanczos algorithm. Each Lanczos step includes three dot-product 
operations, one matix-vector product and an eigenanalysis of the tridiagonal matrix generated 
by the Lanczos process. 

3. After convergence of the Lanczos algorithm the components of the Fiedler vector are ranked and 
this ranking is used to reorder the dual mesh connectivity. 

4. The graph is then split in two and this process is repeated on each subgraph. 

The RSB algorithm can be computationally intensive since a series of eigenvalue problems have to be 
solved. In order to keep the partitioning time as small as possible, we have implemented the RSB 
algorithm on the CM-5E system in a data-parallel fashion. In this implementation all elements of the 
mesh are treated in parallel. It implies a two-level parallelization: one level on the partitions generated 
at a given stage of the decomposition process and the other on the elements in each partition. Most of 
the resulting code is written in the CM Fortran lang~age,~ except the eigenanalysis of the tridiagonal 
matrix which is implemented in CDPEAC (a macro-a~sembler).~ Details of the implementation can be 
found in Reference 5. 

2.1.2. Node renumbering. Once the elements have been reordered to obtain element blocks, the 
mesh nodes are renumbered using the following procedure. 

1. 
2. 

3. 

4. 

5 .  

Each element is assigned the element block number to which it belongs. 
Each element sends the block number to the nodes it is associated with. Nodes receiving the 
same block number from their neighbouring elements are marked as ‘interior nodes’ and their 
location code is the block number received. The other nodes are marked as ‘boundary nodes’ and 
they choose their location code at random from the block numbers they received. 
Nodes are ranked based on their location code, with the constraint of having interior nodes 
ranked before boundary nodes for the same location code. 
Nodes are assigned to the processors based on their location code in the order obtained in step 3. 
Since all nodes may not be assigned during this phase because of the load balance constraint 
described at the beginning of Section 2.1, this strategy forces interior nodes to have a greater 
probability than boundary nodes of being assigned to the same processor as the elements they are 
associated with. 
Nodes which have not been assigned during step 4 are’ distributed among the processors which 
still have room left. 

This procedure can be easily implemented in a data-parallel fashion, parallelization occurring over the 
elements for steps 1 and 2 and over the nodes for steps 3-5. 

2.2. Communication primitives 

Gather and scatter communication primitives have been designed to take advantage of the data- 
mapping strategies presented in the previous subsection, therefore reducing data transfer between 
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processors as much as possible. The gather operation (which transfers data from a node-based data 
structure to an element-based data structure) is used to illustrate the proposed procedure. 

1. 

2. 

This 

The processor holding a given element partition knows which components of the node-based 
data structure will be needed by the elements of that partition. These values are therefore gathered 
and stored into a local buffer. One can note that this data transfer is either local (i.e. on processor) 
if the node-renumbering algorithm has placed the node on the same processor as the partition, or 
off-processor otherwise. 
Elements in each partition then gather values from the local buffers in order to perform element- 
based computations. This is a purely local data transfer. 

two-step procedure has the advantage of eliminating all redundant data transfer that could 
possibly happen between processors. For example, if two elements residing on the same processor need 
to gather values from the node residing on another processor, these values are gathered only once 
during the first step and are then 'spread' to the elements during the second step. The scatter operation 
is implemented in a similar fashion, the elements first scattering values into local buffers which are in 
turn scattered to the nodes. 

This procedure and the node-renumbering scheme detailed in Section 2.1.2 are the key components 
of high-bandwidth gatherhcatter primitives as shown in the following example. 

2.3. Numerical example 

This example is the computation of a steady viscous flow at Mach 0.5 and Reynolds number 500 
(based on the chord length at the wing root) around an ONERA M6 wing placed at an angle of attack 
of 0". The tetrahedral mesh, courtesy of Rainald Lohner (The George Washington University), is 
composed of 48,011 nodes and 266,556 elements. The graph representation of the mesh has 527,966 
edges. Figure 1 presents a view of the surface mesh on the outer boundaries of the domain. One can see 
the high concentration of boundary elements on the plane of symmetry near the root of the wing. The 
partitioning and fluid flow programmes were compiled with CMF 2.1 and were run in 64 bit arithmetic 
on a 64-processing-node CM-5E system equipped with 256 vector units. This system was running the 
Connection Machine operating system CMOST 7.3. All reported timings correspond to CM elapsed 
times. 

Figure 1 .  M6 wing: view of surface mesh on outer boundaries 
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Figure 2. M6 wing: decomposition into 16 subdomains 

2.3.1. Mesh decomposition. A decomposition of the mesh into 16 subdomains is depicted in Figure 
2. Note that 256 subdomains are actually needed for the CM-5E configuration considered (one 
subdomain per vector unit). Figure 3 shows the cost of the parallel RSB algorithm as the bisection 
procedure progresses. The sub-O(log2 (no. of partitions)) cost is due to the combined effects of the 
two-level parallelization of the algorithm (see Section 2.1.1) and the decrease in the number of 
Lanczos iterations as the bisection procedure progresses. 

The total cost of partitioning the mesh into 256 subdomains is 61 s. At this level of partitioning 
there are 57,003 cuts in the graph, representing 10.8 per cent of the total number of graph edges. Table 
I gives the computing costs of the various parts of the RSB algorithm. The computation of the Fiedler 
vector using the Lanczos algorithm dominates with almost 80 per cent of the total time. A more 
detailed cost analysis of the Lanczos algorithm is presented in Table 11. One can deduce from these two 
tables that about 75 per cent of the total time is spent in communication between processors (the 
communication-dominated portions of the code are the identification of connected blocks, matrix- 
vector products, and data ranking and reordering). None the less, the parallel RSB algorithm exhibits 
good performance on the CM- 5E system. 

Figure 3. M6 
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Table I. M6 wing: elapsed times for various parts of RSB 
algorithm for partitioning into 256 subdomains on 64-node CM-5E 
system 

Time (s) Percentage 

Identification of connected blocks 9.3 15.2 
Computation of Fiedler vector 47.4 77.6 
Data rankingheordering 2.3 3.8 
Miscellaneous 2.1 3.4 
Total 61.1 100.0 

Table 11. M6 wing: cost analysis for computation of Fiedler vector 

Time (s) Percentage 

Matrix-vector products 31.7 66.9 
Dot-products 5.5 11.6 
Eigenvalue analyses 3.0 6.3 
SAXPYs and miscellaneous 7.2 15.2 
Total 47.4 100.0 

2.3.2. Fluid JEow computation. The steady state computation was converged to engineering 
accuracy (three orders of magnitude in residual reduction) in 500 time steps at CFL number 2. A one- 
point integration rule was used on each element. Views of the wing surface mesh and pressure contours 
on the wing are shown in Figures 4 and 5 respectively. Timings for the computation and 
communication (i.e. gather and scatter) parts of the programme are given in Table 111. In this example 
the computation part achieves 36.8 Mflops/s/pn. The gather and scatter operations yield bandwidths of 
20.5 and 20.3 MbytesMpn respectively. The overall performance of the solver is 1.9 Gflops/s, which is 
about 20 per cent of the peak hardware performance. The convergences of the drag force FD and side 
force Fs as a function of the time step number are presented in Figures 6 and 7 respectively. One can 
see that convergence (as far as the aerodynamicist is concerned) is actually achieved after about 350 
time steps. This viscous computation could therefore have been done in less than 20 min. 

Figure 4. M6 wing: view of mesh on wing surface 
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Table 111. M6 wing: CM elapsed times for 
various parts of finite element programme run 
on 64-node CM-SE system 

Time (s) 

Gather operations 
Computations 
Scatter operations 
Total 

83 
1104 

147 
1334' 

* 22 min, 14 s. 

Figure 5. M6 wing: pressure contours on wing surface 
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Figure 6. M6 wing: convergence of drag force 
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3. CONCLUSIONS 

Practical solution of engineering problems on parallel computers involves consideration of aspects not 
present in sequential computing. For example, one needs to address issues of domain decomposition, 
load balancing and communication costs in addition to efficiently programmed algorithms. As a 
practical example of these issues we have considered the solution of a laminar viscous flow about an 
ONERA M6 wing on a 64-processing-node CM-5E system. We have shown that a parallel 
implementation of the recursive spectral bisection algorithm leads to a very efficient domain 
decomposition of high quality. This in turn leads to very low communication costs. Thus a steady 
viscous flow of a model comprised of 48,011 nodes and 266,566 elements can be obtained on a 64- 
processing-node CM-5E system in roughly 20 min elapsed time. This is sufficiently fast to support the 
engineering design process. 
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